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Scaling of sensory information in large
neural populations shows signatures of
information-limiting correlations
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How is information distributed across large neuronal populations within a given brain area?
Information may be distributed roughly evenly across neuronal populations, so that total
information scales linearly with the number of recorded neurons. Alternatively, the neural
code might be highly redundant, meaning that total information saturates. Here we investi-
gate how sensory information about the direction of a moving visual stimulus is distributed
across hundreds of simultaneously recorded neurons in mouse primary visual cortex. We
show that information scales sublinearly due to correlated noise in these populations. We
compartmentalized noise correlations into information-limiting and nonlimiting components,
then extrapolate to predict how information grows with even larger neural populations. We
predict that tens of thousands of neurons encode 95% of the information about visual
stimulus direction, much less than the number of neurons in primary visual cortex. These
findings suggest that the brain uses a widely distributed, but nonetheless redundant code that
supports recovering most sensory information from smaller subpopulations.
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ur brains encode information about sensory features in

the activity of large neural populations. The amount of
encoded information provides an upper bound on
behavioral performance, and so exposes the efficiency and
structure of the computations implemented by the brain. The
format of this encoding reveals how downstream brain areas
ought to access the encoded information for further processing.
For example, the amount of information in visual cortex about
the drift direction of a moving visual stimulus determines how
well one could in principle discriminate different drift directions
if the brain operates at maximum efficiency, and its format tells
us how downstream motion-processing areas ought to “read out”
this information. Therefore, knowing how the brain encodes
sensory information about the world is necessary if we are to
understand the computations it performs. Unfortunately, we still
know little about how sensory information is distributed across
neuronal populations even within a single brain area. Is infor-
mation spread evenly and largely independently across neurons,
or in a way that introduces significant redundancy? In the first
scenario, one would need to record from the whole neuronal
population to get access to all available information, whereas in
the second scenario only a fraction of neurons would be needed.
The amount of information about a stimulus feature that can
be extracted from neural population activity depends on how this
activity changes with a change in the stimulus feature. For
information that can be extracted by a linear decoder, which is
the information we focus on in this work, it depends on the
neurons’ tuning curves, as well as how their activity varies across
repetitions of the same stimulus (i.e., “noise”)!~%. Due to the
variability in neural responses to repetitions of the same stimulus,
each neuron’s response provides limited information about the
stimulus feature®—?. If the noise is independent across neurons, it
can be averaged out by pooling across neurons!?, and total
information would on average increase by the same amount with
every neuron added to this pool (Fig. 1a, red). This corresponds
to the first scenario in which information is spread evenly across
neurons. If, however, the trial-to-trial variations in spiking are
shared across neurons—what are referred to as “noise correla-
tions”—the situation is different. In general, depending on their
structure, noise correlations can either improve or limit the

amount of information (Fig. 1b), such that the presence of cor-
related noise alone does not predict its impact. In a theoretical
population with translation-invariant tuning curves (ie., the
individual neurons’ tuning curves are shifted copies of each other)
and noise correlations that are larger for neurons with similar
tuning, information might quickly saturate with population
size!®!1, corresponding to the second scenario (Fig. la, black).
Even though such correlation structures, which are traditionally
studied in sensory areas, have been observed across multiple brain
areas!®12-15, neural tuning is commonly more heterogeneous
than assumed by Zohary et al.10. A consequence of this hetero-
geneity is that sensory information might grow without bound
even with noise correlations of the aforementioned structure!.
Overall, it remains an open question if sensory information
saturates in large neural populations of human and animal
brains!.

If information saturates in such populations, then, by the
theory of information-limiting correlations (TILC)!7, information
in large populations is limited exclusively by one specific com-
ponent of the noise correlations. This component introduces
noise in the direction of the change of the mean population
activity with stimulus value (e.g., drift direction; black arrow in
Fig. 1b, bottom), thus limiting information about this value.
Measuring this noise correlation component directly in neural
population recordings is difficult, as noise correlations are, in
general, difficult to estimate well'8, and the information-limiting
component is usually swamped by other types of correlations that
do not limit information!”>1°. Fortunately, however, TILC also
predicts how information scales with population size if
information-limiting correlations are present. We thus exploited
this theory to detect the presence of information-limited corre-
lations indirectly by examining how information scales with
population size.

In this work, we search for the presence of information-
limiting correlations, by simultaneously recording the activity of
hundreds of neurons in V1 of awake mice in response to drifting
gratings, with hundreds of repeats of each stimulus. We asked
how these neurons encoded information about the direction of
the moving visual stimulus. We found that noise correlations
reduce information even within the limited neural populations we
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Fig. 1 Information scaling in large neural populations, and the impact of noise correlations on information. a The information that a population of

neurons can encode about some stimulus value is always a non-decreasing function of the population size. Information might on average increase with
every added neuron (unbounded scaling; red) if the information is evenly distributed across all neurons. In contrast, information can rapidly saturate if
information is redundant, and thus it is not strictly limited by population size, but by other factors. In general, it has only been possible to record from a very
small subset of neurons of a particular area (gray shaded), from which it is hard to tell the difference between the two scenarios if the sampled population
size is too small. b The encoded information is modulated by noise correlations. This is illustrated using two neurons with different tunings to the stimulus
value (top). The amount of information to discriminate between two stimulus values (8,/red and 6,/blue) depends on the difference in mean population
activity (crosses) between stimuli, and the noise correlations (shaded ellipsoids) for either stimulus (bottom, showing joint neural activity of both neurons).
The information is largest when the noise is smallest in the direction of the mean population activity difference (black arrow), which leads to the largest
separation across the optimal discrimination boundary (gray line). In this example, positive correlations boost information (middle), whereas negative

correlations lower it (right), when compared to uncorrelated neurons (left). In general, the impact of noise correlations depends on how they interact with

the population’s tuning curves.
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could record. Applying TILC to compartmentalize information-
limiting correlations from nonlimiting correlations, and to
extrapolate the growth of information to larger neural popula-
tions, we found that on the order of tens of thousands of neurons
would be required to encode 95% of the information about the
direction of the moving stimulus. Given that there are hundreds
of thousands of neurons in this brain region, this means that only
a small fraction of the total population is needed to encode this
information. This is not because only a small fraction of neurons
contains information about the stimulus; rather, we found that
most neurons contain information about the stimulus, but
because information is represented redundantly, only a small
fraction of these neurons is actually needed. Notably, the size of
the required neural population depends only weakly on stimulus
contrast; thus, increasing the amount of information in this brain
area does not substantially increase the number of neurons
required to encode 95% of the information about the stimulus.
Finally, we found that the low-dimensional neural subspace that
captures a large fraction of the noise correlations does not encode
a comparably large fraction of information. Overall, our results
suggest that information in mouse V1 is both highly distributed
and highly redundant, which is true regardless of the total
amount of information encoded.

Results

Neural response to drift direction of moving visual stimuli. To
measure how sensory information scales with population size, we
used two-photon calcium imaging to record neural population
activity from layer 2/3 of V1 in awake mice observing a low-
contrast drifting grating (10% contrast). The drift direction varied
across trials, with each trial drawn pseudorandomly from eight
possible directions, spaced evenly around the circle (Fig. 2a). We
simultaneously recorded 273-386 neurons (329 on average)
across four mice and a total of 16 sessions (Fig. 2b), and analyzed
temporally deconvolved calcium activity, summed up over the
stimulus presentation period as a proxy for their spike counts
within that period. The tuning curves of individual neurons
(Fig. 2c) revealed that, on average, only a small fraction of neu-
rons (5-45% across mice/sessions, 18% average) were tuned to
the grating’s drift direction, while a larger fraction of neurons
(38-60% across mice/sessions, 48% average) were sensitive to the
grating’s orientation, but not its direction of drift. The remaining
neurons had no appreciable tuning (14-52% across mice/sessions,
34% average), but were nonetheless included in the analysis, as
they can contribute to the information that the population
encodes through noise correlations?®2l. See Supplementary
Figs.1-3 for more examples of neural responses, tuning curves,
pairwise noise correlations, and raw calcium traces. We found no

a

significant impact of the drift direction in the previous trial on
neural responses in the current trial (Supplementary Fig. 1b and
Supplementary Table 1). Tuning curves were plotted for the sole
purpose of characterizing individual neural responses, but our fits
had no bearing on any of our further analysis.

Noise correlations limit information. To quantify stimulus
information encoded in the response of neural populations, we
asked how well a linear decoder of the recorded population
activity (ie., information decodable by a single neural network
layer) would allow us to discriminate between a pair of drift
directions (Fig. 3a). Importantly, our aim was to measure infor-
mation that population activity conveyed about drift direction in
general, without prioritizing specific drift directions over others.
Even though subselecting a limited set of drift directions is
common in animal training, we here focused on discriminating
drift directions in pairs only as a tool to get at information about
drift direction in general, which should be more reflective of real-
world demands. We measured the decoder’s performance by
generalizing linear Fisher information, usually restricted to fine
discriminations, to coarse discrimination (Fig. 3b). This gen-
eralization is closely related to the sensitivity index d’ from signal
detection theory>22, and has a set of appealing properties (see
“Methods”). In particular, combining the activity of two uncor-
related neural populations causes their associated Fisher infor-
mation to add, so that it does not trivially saturate like other
measures of discrimination performance (Fig. 3¢, inset).

We used generalized Fisher information to measure how
information about drift direction scales with the number of
neurons in the recorded population. Because this scaling depends
on the order in which we add particular neurons to the
population (individual neurons might contribute different
amounts of additional information to a population), we measured
average scaling by averaging across a large number of different
random orderings (see “Methods”). Figure 3¢ shows this average
scaling for one example session for discriminating between drift
directions of 135° and 180° (arbitrary choice; as shown below,
other drift direction combinations resulted in comparable
information scaling). Information increases with population size,
but, on average, additional neurons contribute less additional
information to larger populations than to smaller ones. The
resulting sublinear scaling is expected if noise correlations limit
information. Indeed, trial-shuffling the data to remove pairwise
correlations resulted in information that scaled linearly, with
average information exceeding that of the non-shuffled data for
all population sizes except, trivially, for single neurons, and a
significantly higher total information within the recorded
population (bootstrap, p =0.0062). Such linear scaling was not

180° c untuned
00t goee
135° _ .
& orientation-
[ tuned
90° <
acdnaads)
. ~ direction-
45 P E e tuned
S tHHHH
0°

0° 90° 180° 270° 360°
drift direction

Fig. 2 Experimental design, population recordings, and neural tuning. a Mice passively observed sequences of drifting gratings (white arrows overlaid for
illustration only), interleaved with blank screens. b Example field-of-view with significantly tuned neurons color coded by their preferred orientation tuning.

¢ Left: example fitted tuning curves of 20 significantly tuned neurons. Right:

example tuning curves (dots + bars: raw tuning, mean + 25-75% percentiles;

line: fitted) fitted to per-trial neural responses (dots, horizontally jittered) for an untuned (top), orientation-tuned (middle) and direction-tuned (bottom)

neuron.
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Fig. 3 Noise correlations limit information across all drift directions. a A drift direction discrimination task, in which a hypothetical observer needs to
judge which of two template drift directions (6, or 8,; indicated by white arrows) an observed low-contrast drifting grating corresponds to. b Mean activity f
(crosses) and noise covariance X (shaded area =~ 2SDs) of a pair of neurons across repeated presentation of the same two drift directions, 6, (red) and 6,
(blue). Linear information about drift direction is limited by the projection of the noise onto the optimal linear decoder w. This decoder depends on how
mean activity changes with drift direction (6f = f(6,) — f(6;)) and the noise covariances X. ¢ The information associated with discriminating between drift
directions 135° and 180° scales sublinearly with population size (black; mean =1 SD across random orderings of neurons within the population). If we
remove noise correlations by shuffling trials across neurons, the information scales linearly (red). This linear growth would not be apparent from the
probability of correctly identifying the stimulus’ drift direction (inset), which is monotonically, but non-linearly related to Fisher information, and saturates
in both cases. d Information in the recorded population was consistently larger for trial-shuffled data across different discriminations, sessions, and mice.
Each dot (mean =1 SD of information estimate; filled = significant increase, bootstrap, p < 0.05) shows the information estimated for one discrimination
with 80 = 45°. e The drift direction discrimination threshold (corresponding to 80% correct discriminations) we would expect to see in a virtual
discrimination experiment drops with the amount of information that V1 encodes about drift directions. f The inferred drift direction discrimination
threshold for the same session as in panel ¢ is comparable across the different drift direction pairs with 66 = 45° used to estimate Fisher information with
the recorded population.

apparent if we measured discrimination performance by the ~15.2° for the Fisher information estimated from a 135° vs. 180°
fraction of correct discriminations (Fig. 3¢, inset), illustrating the  discrimination (Fig. 3f). Previously reported discrimination
point that Fisher information is indeed a better measure to threshold of mice, as measured from behavioral performance,
analyze information scaling. Removing noise correlations resulted  ranged from 6.6°23 over 10-20°24, to 30-40°2°. These numbers
in a significant information increase in all our datasets (Fig. 3d; provide an orders-of-magnitude comparison, but cannot be
paired ts3 = —17.93, two-sided p = 1.96 x 10725 statistics com-  directly compared to our estimate, as neither study exactly
puted across all sessions and mice, but only across non- matched the stimuli we used. Moreover, previous work has shown
overlapping 60 = 45° discriminations to avoid duplicate use of that attending to a stimulus boosts the information encoded
individual drift direction trials; see Supplementary Table 2 for about this stimulus®®27. As our animals were passive observers
avg. per-neuron information for all sessions/mice), confirming that were not actively engaged in any task, the estimated
that noise correlations indeed limit information in our recorded  threshold likely underestimate discrimination capabilities. Indeed,
populations. higher running speeds, which were previously used as a proxy for

To aid interpretation of the estimated amounts of Fisher increased attention?$, resulted in increased information (as
information, we translated them into quantities that are more shown previously by Dadarlat and Stryker?®) and lower thresh-
frequently measured in experiments. Specifically, we assumed that  olds (Supplementary Fig. 4). In line with previous findings?, this
the recorded neural population was used to discriminate between information boost was caused by a combination of a change in
two close-by drift directions in a virtual fine discrimination task  population tuning, per-neuron noise variability, and pairwise
(similar to Fig. 3a). For a given estimate of Fisher information, we noise correlations, rather than either of these factors in isolation
could then determine the expected discrimination threshold at (Supplementary Fig. 5). Overall, the estimated thresholds provide
which the ideal observer could correctly discriminate between two  a reasonable interpretation of the information encoded in the
drift directions in 80% of the trials based solely on neuronal recorded population. Computing the discrimination threshold for
responses (Fig. 3e). This resulted in a discrimination threshold of ~all drift direction pairs with 66 =45 resulted in comparable
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thresholds that did not differ significantly (bootstrap, two-sided
p=0.50 for session shown in Fig. 3f, two-sided p>0.49 for all
sessions/mice). We found comparable information across all drift
directions, confirming that we recorded from populations that
were homogeneously tuned across all drift directions.

Neural signatures of limited asymptotic information. To
identify neural signatures of limited encoded information, we
relied on the TILC that showed that noise correlations in large
populations can be compartmentalized into information-limiting
and nonlimiting components!”. The limiting component is scaled
by the inverse of the asymptotic information I.., which is where
information asymptotes in the limit of a large number of
neurons!”-19, This compartmentalization allowed us to split the
information Iy in a population of N neurons into the contribution
of limiting and non-limiting components (see “Methods”),
resulting in

Iy =7 T (1)

This expression assumes that the non-limiting component
contributes ¢ information per neuron on average, irrespective of
the current population size. Model comparison to alternative
non-limiting component scaling models confirmed that this
assumption best fits our data (Supplementary Fig. 6b).

Increasing the population size N in Eq. (1) reveals how
information ought to scale in small populations if it is limited
in large populations (Fig. 1). Information would initially grow
linearly, closely following cN. However, for sufficiently large N, it
would start to level off and slowly approach the asymptotic
information I.. If we were to record from a small number of
neurons, we might only observe the initial linear growth
and would wrongly conclude that no information limit exists
(Fig. 1). Therefore, simultaneously recording from sufficiently
large populations is important to identify limited asymptotic
information.

To distinguish between a population in which information
does not saturate from one in which it does, we fitted two models
to the measured information scaling. The first assumed that,
within the recorded population, information scales linearly and
without bound. We might observe this information scaling if, on
average, each neuron contributes the same amount of informa-
tion. The second model corresponds to Eq. (1), and assumes that
information asymptotes at I... Our fits relied on a large number of
repetitions (at least as many as the number of recorded neurons)
of the same drift direction within each experimental session to
ensure reliable, bias-corrected information estimates’”. These
estimates are correlated across different population sizes, as
estimates for larger populations share data with estimates for
smaller populations. Unlike previous work that estimated how
information scales with population size31-33, we accounted for
these correlations by fitting how information increases with each
additional neuron, rather than fitting the total information for
each population size. This information increase turns out to be
statistically independent across population sizes (see “Methods”),
making the fits statistically sound and side-stepping the problem
of fitting correlated data.

Figure 4a illustrates the fit of the limited-information model to
the data of a single session. We fitted the average information
increase with each added neuron (Fig. 4a, top), and from this
predicted the total information for each population size (Fig. 4a,
bottom). Bayesian model comparison to a model that assumed
unbounded information scaling confirmed that a model with
limited asymptotic information was better able to explain the
measured information scaling (Watanabe-Akaike Information

Criterion WAIC1im = —529.25 vs. WAIC;;,,, = —531.59; smaller
is better). This was the case for almost all discriminations with
80 =45" across sessions and mice (Supplementary Fig. 6a).
Furthermore, the same procedure applied to the shuffled data
resulted in better model fits for the unbounded information
model, confirming that our model comparison was not a priori
biased towards the limited-information model (Supplementary
Fig. 6a). Two sets of simulations with idealized and realistic neural
models further confirmed that this model comparison was able to
recover the correct underlying information scaling (Supplemen-
tary Fig. 7). Therefore, information about drift direction is limited
in the neural population responses within our dataset.

This result of limited drift direction information was
corroborated by a second analysis. We start by observing that
Eq. (1) can be rewritten as 1/Iy = a(1/N) + 1/I.., which is linear
in the inverse population size 1/N with slope a = 1/c. Increasing
the population size, N — oo, causes the inverse information to
approach the asymptotic information, 1/Iy—1/I... Therefore, we
can distinguish between limited asymptotic information and
unbounded information scaling (ie., I, — o) by plotting 1/Iy
against 1/N, and estimating its intercept at 1/N — 0. A non-zero
intercept confirms limited asymptotic information, whereas a
zero intercept would suggest information to scale without
apparent bounds. When we analyzed the previous single-session
data, we found that the inverse information indeed tightly scales
linearly with the information population size (linear regression,
adjusted R?= 1), as predicted by the model (Fig. 4b). Further-
more, the intercept at 1/N— 0 was significantly above zero
(linear regression, B, = 0.023, two-sided p < 10~9), suggesting that
information saturates with N. We found comparably good linear
fits for all sessions/mice across all 80=45" discriminations
(average adjusted R2?=~0.999; Supplementary Fig. 8a), and
intercepts that were all significantly above zero (f,=0.023,
tes = 17.95, two-sided p <1010 across non-overlapping discri-
minations; Supplementary Fig. 8b), confirming the results of our
model comparison.

In addition to supporting the distinction between information-
limited and unbounded information scaling, TILC also allowed us
to estimate the magnitude at which information would asymptote if
we increased the population size beyond that of our recorded
population. This is a theoretical measure that would be reached
only for infinitely large virtual populations that have the same
statistical structure as the recorded neurons. Despite this limitation,
it gives insight into the order of magnitude of the information that
we could expect to be encoded in the large populations of neurons
present in mammalian cortices. To quantify the uncertainty
associated with extrapolations beyond observed population sizes,
we relied on Bayesian model fits that provide posterior distributions
over our estimates of I, as illustrated in Fig. 4c. These posteriors
were comparable across the discrimination of different drift
direction pairs (Fig. 4d). Comparable information estimates across
different drift direction pairs were essential to make these estimates
meaningful, as different estimates would have implied that these
estimates are driven by neural subsets within a heterogeneous
population rather than being a statistical property of the whole
population, as desired. Furthermore, it allowed us to reduce our
uncertainty in the . estimates by pooling the fits across different,
non-overlapping drift direction pairs (Fig. 4d; gray). Indeed,
Bayesian model comparison that accounts for the larger number
of parameters of multiple individual per-discrimination fits
confirmed that those were outperformed by pooled fits for all but
two experimental sessions across all tested drift direction differences
(Supplementary Fig. 9). This provided further evidence that, for a
fixed drift direction difference, the measured information scaling
was statistically indistinguishable across different discriminations
within each session.
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